Probing p-adic CFT using p-adic bulk \& $P G L_{2}$

Hao-Yu Sun
University of Texas, Austin, USA

May 21, 2021 CINVESTAV

8th International Conference on p-Adic Mathematical Physics and its Applications

arXiv:1911.06313, w/ Stephen Ebert (UCLA) \& Meng-Yang Zhang (Princeton)

Motivation

- To get a discretized spacetime model which is most similar to ordinary AdS spacetime (unlike e.g. tensor networks).
Many techniques carry over: propagators, Witten diagrams, GKP-W dictionary, etc...
- Inspired by the success of p-adic string in the 80s [Brekke, Freund, Olson, Witten; Vladimirov; Dragović, Volovich; many others...]

Veneziano \& Shapiro-Virasoro amplitudes: adelic product

- Connections with strongly-correlated condensed matter systems: e.g. ultra-cold atoms [Bentsen, Hashizume, Buyskikh, Davis, Daley, Gubser, Schleier-Smith, '19]
- Earlier work on connections between dS/CFT and BT tree in the context of eternal inflation [Harlow, Shenker, Stanford, Susskind, '12]
- Modern foundation: [Gubser, Knaute, Parikh, Samberg, Witaszczyk, '16] [Heydeman, Marcolli, Saberi, Stoica, '16]

1. Introduction to p-adic

A (not so) weird \# system

The tortoise can't take over the hare!

- Non-Archimedean: $\sup \left\{|n|_{\mathbb{F}}: n \in \mathbb{Z}_{\mathbb{F}}\right\}=1$, $\operatorname{not} \sup \left\{|n|_{\mathbb{F}}: n \in \mathbb{Z}_{\mathbb{F}}\right\}=\infty$
- \Rightarrow Ultrametricity: $|x+y|_{\mathbb{F}} \leq \sup \left(|x|_{\mathbb{F}},|y|_{\mathbb{F}}\right)$

\Rightarrow All triangles are "tall isosceles", otherwise
triangle ineq/axiom $|x+y|_{\mathbb{F}} \leq|x|_{\mathbb{F}}+|y|_{\mathbb{F}}$ violated
Basic idea: 1. View p as a small but nonzero \#

2. All integers coprime to p have the same size

- For a prime p, \mathbb{Q}_{p} is a completion of rationals \mathbb{Q} w.r.t. the p-adic norm $|\cdot|_{p}$ Any $x \in \mathbb{Q}_{p}$ has a unique p-adic expansion:

$$
x=\underbrace{\ldots a_{3} a_{2} a_{1} a_{0}}_{\text {in } \mathbb{Z}_{p}} . \underbrace{a_{-1} a_{-2} \ldots a_{v_{p}}}_{\text {fractional part of } x} \equiv \sum_{n=v_{p}}^{\infty} a_{n} p^{n}
$$

where $a_{n} \in\{0,1, \cdots, p-1\}$, and v_{p} is the smallest integer index s.t. $a_{v_{p}} \neq 0$

- Norm $|x|_{p}=p^{-v_{p}}$
- Ostrowski's theorem: \mathbb{Q} only has two completions! $\mathbb{R} \& \mathbb{Q}_{p}$

Bruhat-Tits (BT) tree

- A great visualization of p-adic \#'s
- T_{p} has valence $p+1$, also called "Bethe lattice", such as in [Baxter, '82]
- 1st introduced into hep-th by [Zabrodin, '89] as the interior of an openstring worldsheet
- $\partial T_{p}=P^{1}\left(\mathbb{Q}_{p}\right) \equiv \mathbb{Q}_{p} \cup \infty$
- Isometry group is $P G L\left(2, \mathbb{Q}_{p}\right)$
- Key player for p-adic holography
- Straightforward for unramified extension $\mathbb{Q}_{p^{n}}$, an n-dim vector space over \mathbb{Q}_{p}

1st definition of T_{p}

- Based on equiv classes of the \mathbb{Q}_{p}^{2}-lattice \mathscr{L}
- Consider $\mathscr{L}=\left\{a u+b v \in \mathbb{Q}_{p}^{2} \mid a, b \in \mathbb{Z}_{p}\right\}$, where u and v are independent basis vectors in $\mathbb{Q}_{p}^{2} . \mathscr{L} \sim \mathscr{L}^{\prime}$ if $\mathscr{L}=c \mathscr{L}^{\prime}$ for some $c \in \mathbb{Q}_{p}^{\times}$
- Assign each equiv class to a vertex on the tree
- $M \in G L\left(2, \mathbb{Q}_{p}\right)$ acts on \mathscr{L} as matrix multiplication: $M \mathscr{L}=(M u, M v)$. Generically $P G L\left(2, \mathbb{Q}_{p}\right)$ takes one equiv class to another.
- But any subgroup conjugate to $P G L\left(2, \mathbb{Z}_{p}\right)$ leaves an equiv class invariant $\Rightarrow T_{p}$ should really be the homogeneous space $P G L\left(2, \mathbb{Q}_{p}\right) / P G L\left(2, \mathbb{Z}_{p}\right)$, the latter being the max. compact subgroup.
- With vertices, we need edges: \mathscr{L} and \mathscr{L}^{\prime} are incident if $p \mathscr{L} \subset \mathscr{L}^{\prime} \subset \mathscr{L}$

2nd definition of T_{p}

Determines
norm

- Expand $z=p^{v} \sum_{m=0} a_{m} p^{m}, a_{0} \neq 0$
- To move up the tree: choose p-adic digits from right to left, starting from the decimal pt.
After leaving the red trunk, each node is a rational approximation
- Valence $p+1$:

1. Rightmost digit $\neq 0 \rightarrow(p-1)$ choices
2. Any digit to its left can be zero $\rightarrow p$ choices

- Ring of integers: $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$ Set of units: $\mathbb{U}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p}=1\right\}$ Multiplicative subgroup: $\mathbb{Q}_{p}^{\times} \equiv \mathbb{Q}_{p} \backslash\{0\}$

Our results

- Computed partition functions for p-adic "thermal AdS" (TAdS) and "BTZ black hole"
- p-adic "genus-1" 1-point function in the semiclassical background of p-adic BTZ
- Set up certain criteria to pinpoint the group representation(s) of $P G L\left(2, \mathbb{Q}_{p}\right)$ for p-adic CFTs

3. p-adic bulk \& bdry

Genus > 0 curves

- T^{2} identified with the complex lattice $\mathbb{Z}+\tau \mathbb{Z}, \tau \in \mathbb{C}$.
- Usual BTZ is $\mathbb{H}^{3} / \Gamma, \Gamma \subset P S L(2, \mathbb{C})$ a Schottky group, generated by $\left(\begin{array}{cc}q^{\frac{1}{2}} & 0 \\ 0 & q^{-\frac{1}{2}}\end{array}\right)$, where $q=e^{2 \pi i \tau}$
- p-adic BTZ is constructed in the 2nd way: quotient by $\Gamma=\left\langle\left(\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right)\right\rangle$
where $q \in \mathbb{Q}_{p}^{\times}$
- $B \equiv T_{p} \cup\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right) \backslash\{0, \infty\}\right)$, where $\{0, \infty\}$ is the limit set \Rightarrow genus-1 bdry
- B / Γ has one regular polygon at the center. The horizon length is $l=\log _{p}|q|_{p}>1$.
- Genus-1: Tate (uniformized) elliptic curve Genus >1: Mumford curve

Axioms of p-adic CFT

[Melzer, '89]

- Has an operator product expansion (OPE) algebra w/ real OPE coeff
- \mathbb{C}-valued correlation functions
- Transformation $x \rightarrow x^{\prime} \in P^{1}\left(\mathbb{Q}_{p}\right)$ is fractional linear:

$$
x \rightarrow x^{\prime}=\frac{a x+b}{c x+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L\left(2, \mathbb{Q}_{p}\right)
$$

Easy to show: $\phi_{a}^{\prime}\left(x^{\prime}\right)\left(d x^{\prime}\right)^{\Delta}=\phi_{a}(x)(d x)^{\Delta}$, so all fields are primary, $d x$ is Haar measure on \mathbb{Q}_{p}

- Primary operators can have arbitrary dimensions, but the identity operator must have dimension 0 .
- 2-pt \& 3-pt functions:

$$
\Delta_{12} \equiv \Delta_{1}+\Delta_{2}-\Delta_{3}
$$

$$
\left\langle\mathcal{O}_{1}\left(z_{1}\right) \mathcal{O}_{2}\left(z_{2}\right)\right\rangle=\frac{C_{\mathcal{O}_{1} \mathcal{O}_{2}}}{\left|z_{12}\right|_{p}^{\Delta_{1}}} \quad\left\langle\mathcal{O}_{1}\left(z_{1}\right) \mathcal{O}_{2}\left(z_{2}\right) \mathcal{O}_{3}\left(z_{3}\right)\right\rangle=\frac{C_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}}}{\left|z_{12}\right|_{p}^{\Delta_{12}}\left|z_{23}\right|_{p}^{\Delta_{23}}\left|z_{31}\right|_{p}^{\Delta_{31}}}
$$

- Automatically unitary (unlike Archimedean CFT)
- No local conformal algebra or descendants \Rightarrow OPEs are exact. Just the global conformal group $P G L\left(2, \mathbb{Q}_{p}\right)$

p-adic holography

[Gubser, Knaute, Parikh, Samberg, Witaszczyk, '16]

- First established using propagators \& correlators.
- They look similar!
- Bulk-to-bdry propagators:

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
\text { ordinary } \\
\text { p-adic } \\
\longrightarrow
\end{array} z_{0}, \vec{z} ; \vec{x}\right)=\frac{\zeta_{\infty}(2 \Delta)}{\zeta_{\infty}(2 \Delta-n)} \frac{z_{0}^{\Delta}}{\left(z_{0}^{2}+(\vec{z}-\vec{x})^{2}\right)^{\Delta}} \\
& \left.\zeta_{p}\right)=\frac{\zeta_{p}(2 \Delta)}{\zeta_{p}(2 \Delta-n)} \frac{\left|z_{0}\right|_{p}^{\Delta}}{\left|\left(z_{0}, z-x\right)\right|_{s}^{2 \Delta}}
\end{aligned}
$$

- Bulk-to-bulk propagators:

$$
\begin{aligned}
& G\left(z_{0}, \vec{z} ; w_{0}, \vec{w}\right)=\frac{1}{2 \Delta-n} \frac{\zeta_{\infty}(2 \Delta)}{\zeta_{\infty}(2 \Delta-n)} u_{\infty}^{-\Delta} \times{ }_{2} F_{1}\left(\Delta, \Delta-n+\frac{1}{2} ; 2 \Delta-n+1 ;-\frac{4}{u_{\infty}}\right) \\
& G\left(z_{0}, z ; w_{0}, w\right)=\frac{\zeta_{p}(2 \Delta-n)}{p^{\Delta}} \frac{\zeta_{p}(2 \Delta)}{\zeta_{p}(2 \Delta-n)} u_{p}^{-\Delta}
\end{aligned}
$$

- 2-pt functions:

$$
\begin{aligned}
& \left\langle\mathcal{O}\left(\overrightarrow{x_{1}}\right) \mathcal{O}\left(\vec{x}_{2}\right)\right\rangle_{\infty}=\eta_{\infty} L^{n-1}(2 \Delta-n) \frac{\zeta_{\infty}(2 \Delta)}{\zeta_{\infty}(2 \Delta-n)} \frac{1}{\left|\bar{x}_{12}\right|^{2 \Delta}} \\
& \left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)\right\rangle_{p}=\eta_{p} \frac{p^{\Delta}}{\zeta_{p}(2 \Delta-n)} \frac{\zeta_{p}(2 \Delta)}{\zeta_{p}(2 \Delta-n)} \frac{1}{\left|x_{12}\right|_{4}^{2 \Delta}}
\end{aligned}
$$

- 3-pt functions:

$$
\begin{aligned}
\left\langle\mathcal{O}\left(\vec{x}_{1}\right) \mathcal{O}\left(\vec{x}_{2}\right) \mathcal{O}\left(\vec{x}_{3}\right)\right\rangle_{\infty} & =-\eta_{\infty} L^{n-1} g_{3} \frac{\zeta_{\infty}(\Delta)^{3} \zeta_{\infty}(3 \Delta-n)}{2 \zeta_{\infty}(2 \Delta-n)^{3}} \frac{1}{\left|\vec{x}_{12}\right|^{\Delta}\left|\vec{x}_{23}\right|^{\Delta}\left|\vec{x}_{13}\right|^{\Delta}} \\
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle_{p} & =-\eta_{p} g_{3} \zeta_{p}(\Delta)^{3} \zeta_{p}(3 \Delta-n) \\
\zeta_{p}(2 \Delta-n)^{3} & \frac{1}{\left|x_{12} x_{23} x_{13}\right|_{q}^{| |}}
\end{aligned}
$$

$$
\zeta_{\infty}(s) \equiv \pi^{-s / 2} \Gamma(s / 2)
$$

p-adic holography

- p-adic 4-pt function much simpler than ordinary one, due to ultrametricity

$$
\Longrightarrow\left|\vec{z}_{13}\right|=\left|\vec{z}_{14}\right|=\left|\vec{z}_{24}\right|=\left|\vec{z}_{23}\right|
$$

- In unramified extension $\mathbb{Q}_{p^{n}}$, operator T dual to edge length fluctuations on BT tree has 2-pt function $\langle T(z) T(0)\rangle \propto 1 /|z|^{2 n} \Longrightarrow[T]=n$, as expected for a stress tensor, but still \nexists spin-2 particle... [Gubser, Heydeman, Jepsen, Marcolli, Parikh, Saberi, Stoica, Trundy, '16]
- Besides these traditional holographic quantities, it has passed checks: Ryu-Takyanagi formula, MERA, etc [Heydeman, Marcolli, Saberi, Stoica, '16; Hung, Li, Melby-Thompson, '19]

3. Bulk computations

GKP-W dictionary

- In AdS/CFT, For a CFT local operator \mathcal{O}, we have

$$
Z_{\mathrm{grav}}\left[\phi_{\partial}^{i}(x) ; \partial M\right]=\left\langle\exp \left(-\sum_{i} \int_{\partial M} d^{d} x{\underset{\partial}{\text { source }}}_{\phi_{\partial}^{i}(x)} \mathcal{O}^{i}(x)\right)\right\rangle_{\mathrm{CFT} \text { on } \partial M}
$$

with boundary condition $\phi^{i}(z, x)=z^{d-\Delta} \phi_{\partial}^{i}(x)+$ (subleading) as $z \rightarrow 0$
[Gubser-Klebanov-Polyakov, '98; Witten, '98]

- By setting $\phi_{\partial}^{i}=0$, the generating functional computes the CFT partition function
- Here $Z_{\text {tree }}=\int \mathcal{D} \phi_{a} e^{-S_{\text {tree }}\left[\phi_{a}\right]}$
- $S_{\text {tree }}\left[\phi_{a}\right]$ is for massive scalar fields with source. " a " labels vertices

$$
S_{\mathrm{tree}}\left[\phi_{a}\right]=\sum_{\langle a b\rangle} \frac{1}{2}\left(\phi_{a}-\phi_{b}\right)^{2}+\sum_{a}\left(\frac{1}{2} m_{p}^{2} \phi_{a}^{2}-\boxed{J_{a}} \phi_{a}\right)
$$

GKP-W dictionary

- Linearized EoM: $\left(\square+m_{p}^{2}\right) \phi_{a}=J_{a}$, where \square is the lattice/graph Laplacian, a positive definite operator $\square \phi_{a} \equiv \sum_{\langle a b\rangle}\left(\phi_{a}-\phi_{b}\right)$
- Now the partition function is simply $Z_{\phi}=\frac{1}{\sqrt{\operatorname{det}^{\prime}\left(\square+m_{p}^{2}\right)}}$.
- To compute this, we need eigenvalues λ_{i} 's of the Laplacian
- Another way is to use tensor network, making analogy with ordinary diagonal CFTs, to compute it as $\sum_{a}|q|^{\Delta_{a}}$
[Hung, Li, Melby-Thompson, '19]
- Let's first look at "thermal AdS", which is a truncated BT tree.
- All discussions will be on massless scalars

p-adic TAdS

- BT tree is homogeneous: can arbitrarily pick the center and assign any vertex with "depth n ": \# of edges away from the center, whose depth is 0 .
- Show \nexists angular modes: take $\left.\phi\right|_{\partial T_{p}} \equiv \phi_{N}=0$, use the recursion $p\left(\phi_{N-1}-0\right)+\left(\phi_{N-1}-\phi_{N-2}\right)=\lambda \phi_{N-1}$ on the fixed ϕ_{N-2} to get $\tilde{\phi}_{N-1}=\phi_{N-1}$.
- Consider $J=0$, from $n=2: p\left(\phi_{n-1}-\phi_{n}\right)+\left(\phi_{n-1}-\phi_{n-2}\right)=\lambda \phi_{n-1} \star$, then

$$
\phi_{1}=\left(1-\frac{\lambda}{p+1}\right) \phi_{0} \phi_{2}=\left(1-\frac{2 \lambda}{p}+\frac{\lambda^{2}}{p+p^{2}}\right) \phi_{0}
$$

$$
\text { From char. eq } \longrightarrow c_{ \pm}=\left[\frac{1}{2} \pm \frac{p^{2}-1-\lambda p+\lambda}{2(p+1) \sqrt{(p+1-\lambda)^{2}-4 p}}\right] \phi_{0}
$$

- Field value $\phi_{n}=c_{+} \alpha_{+}^{n}+c_{-} \alpha_{-}^{n}$ is a polynomial in eigenvalue λ Coeff of the highest-degree term: $\frac{(-1)^{N} \phi_{0}}{p^{N}+p^{N-1}}$
Coeff of the constant term: ϕ_{0}
Vieta formula on $\phi_{N}=0 \Rightarrow$ product of all roots λ_{i} 's of ϕ_{N} is $p^{N}+p^{N-1}$

p-adic TAdS

- \# of boundary points $\frac{(p+1) p^{N}-2}{p-1} \xrightarrow{N \rightarrow \infty} \frac{p}{p-1}\left(p^{N}+p^{N-1}\right)$ diverges
- Recall divergences in ordinary $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$:

1. 1-loop determinant of $\square+m^{2}$ for a massive scalar on \mathbb{H}^{3} : [Giombi-Maloney-Yin, '08]

$$
\frac{1}{2} \operatorname{Vol}\left(\mathbb{H}^{3}\right) \int \frac{d t}{t} \frac{e^{-\left(m^{2}+1\right) t}}{(4 \pi t)^{3 / 2}}
$$

2. For on-shell Einstein-Hilbert action with constant metric

$$
\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}(R-2 \Lambda)=\frac{V}{4 \pi G l^{2}}
$$

Introduce a renormalized vol $V_{\epsilon}(r)=\pi l^{3}\left(\frac{r^{2}}{2 \epsilon^{2}}-\frac{1}{2}-\ln \frac{r}{\epsilon}\right)$ [Krasnov, '00]

- All can be removed by local counterterms
- In our case, bdry area shows up in e^{S} instead of in action S, but the volume of BT tree grows exponentially instead of power-law.
- Propose the regularized partition function

$$
Z_{\text {tree }}=\left(\frac{p}{p-1}\right)^{1 / 2}
$$

Detailed spectrum

Numerical observations ($N \rightarrow \infty$, at fixed p):

1. Upper bound on $\lambda_{1} \&$ lower bound on λ_{N} converge, separately (Newton's method)
2. Decay of field values is almost exponential

(a) Asymptotics at the smallest eigenvalue.
(b) Asymptotics at the largest eigenvalue.
3. After removing the exponential envelope, ϕ_{n} oscillates around 0

(a) Oscillation of ϕ_{n} / ϕ_{0} at the $15^{\text {th }}$ largest eigen-
(b) Oscillation of ϕ_{n} / ϕ_{0} at the $33^{\text {th }}$ largest eigenvalue for $p=239$. value for $p=239$.

Detailed spectrum

- Ansatz:

$$
\phi_{n, i}=p^{-n / 2} \cos \left(k n \frac{i-1}{N-1} \pi+\psi\right) \phi_{0, i}
$$

k, ψ : to be determined

- Along with the recursion relation $\Rightarrow \lambda_{i}=p+1-2 p^{1 / 2} \cos \left(k \frac{i-1}{N-1} \pi\right)$
- How about k ?
- Plot all eigenvalues in descending order ($N=51$)
\Rightarrow easy to see that $k=1$
- The blue equation is exact only if the corresponding $\phi_{n, i}$ is for large n, and $N \rightarrow \infty$

- Different from the "plane-wave" basis $\epsilon_{\kappa, x}(v) \propto p^{-\kappa d(x, v)}$ in [Heydeman-Marcolli-Saberi-Stoica, '16] $\kappa=0,1, d(x, v)$: distance from bdry pt x call it the "evanescent-wave" basis

p-adic BTZ

- New feature: field values on horizon (depth 0) can be different $\phi_{0,0}, \phi_{0,1}, \ldots, \phi_{0, s}, \ldots, \phi_{0, l-1}$, where s labels horizon vertices \& subtrees
- Boundary (depth N) values vanish, initial condition is $\phi_{N-2, s}=\left(p+1-\lambda_{t}\right) \phi_{N-1, s}$ for $t=0, \ldots, l-1$ subscript t in λ_{t} will be clear soon

- Linear recursion towards the horizon same as before (flipped): $\phi_{n-2, s}+\left(\lambda_{t}-p-1\right) \phi_{n-1, s}+p \phi_{n, s}=0, \quad 2 \leq n \leq N-1 \quad \star \star \quad$ Roots of char. eq.
- Field values: $\phi_{n, s}=c_{+, t}\left(\phi_{N-1, s}\right) \cdot \alpha_{+, t}^{N-1-n}+c_{-, t}\left(\phi_{N-1, s}\right) \cdot \alpha_{-, t}^{N-1-n}$
- Denote ratio b / w field values at depth 1 \& on the horizon as $k \equiv \phi_{1, s} / \phi_{0, s}$. It is isotropic around the horizon, but still depends on $\alpha_{ \pm, t}$ and thus λ_{t}, so write is as $k_{t}\left(\lambda_{t}\right)$

p-adic BTZ

- Now the recursion around the horizon is

$$
\phi_{0, s+2}-\left[(p-1)\left(1-k_{t}\left(\lambda_{t}\right)\right)-\lambda_{t}+2\right] \phi_{0, s+1}+\phi_{0, s}=0, \quad s=0, \ldots, l-1
$$

$$
\mathrm{w} / \text { periodic bdry } \phi_{0,0}=\phi_{0, l}
$$

- Solution to characteristic eq:

$$
r_{ \pm, t}=\frac{1}{2}\left\{\left[(p-1)\left(1-k_{t}\left(\lambda_{t}\right)\right)-\lambda_{t}+2\right] \pm \sqrt{\left[(p-1)\left(1-k_{t}\left(\lambda_{t}\right)\right)-\lambda_{t}+2\right]^{2}-4}\right\}
$$

- It must be a root of unity $\Rightarrow k_{t}\left(\lambda_{t}\right)=1-\frac{1}{p-1}\left(2 \cos \left(\frac{2 \pi t}{l}\right)+\lambda_{t}-2\right), \quad t=0, \ldots, l-1$
$\mathrm{w} / 2$-fold degeneracy $k_{t}\left(\lambda_{t}\right)=k_{l-t}\left(\lambda_{l-t}\right)$, and t labels oscillation modes
- Turns out that the product of all roots for a fixed t is

$$
p^{N}+p^{N-1}+2 \frac{p^{N-1}-1}{p-1}-2 \frac{p^{N}-1}{p-1} \cos \left(\frac{2 \pi t}{l}\right)
$$

- Finally, need to multiply contributions from all $t=1, \ldots,\lceil l / 2\rceil$
- Key identity: $\prod_{k=1}^{\beta}\left[2 x \pm 2 \cos \left(\frac{2 \pi k \alpha}{\beta}+\theta\right)\right]=2\left[T_{\beta}(x)+(\pm 1)^{\beta}(-1)^{\alpha \beta+\alpha} \cos (\beta \theta)\right]$

p-adic BTZ

- Expressed in terms of Chebyshev polynomials of the 1st kind:

$$
\begin{cases}\sqrt{2}\left(\frac{p^{N}}{p-1}\right)^{\frac{l}{2}}\left[T_{l}\left(\frac{p^{2}+1}{2 p}\right)-1\right]^{\frac{1}{2}} & l \text { even } \\ \sqrt{2}\left(\frac{p^{N}}{p-1}\right)^{\frac{L}{2}}\left[T_{l}\left(\frac{p^{2}+1}{2 p}\right)-1\right]^{\frac{1}{2}}\left[\frac{p^{N-1}\left(p^{2}+1+2 p \cos (\pi / l)\right)}{p-1}\right]^{\frac{1}{2}} & l \text { odd. }\end{cases}
$$

- Diverging $p^{I N}$ as $N \rightarrow \infty$ completely differs from: growth of \# of bdry pts $l(p-2)(p-1)^{N-1}$, or the growth of total \# of pts in the BTZ graph $l p^{N}$, so there is no obvious way to regularize, and we keep our results as

$$
Z_{\mathrm{BTZ}}= \begin{cases}\left(\frac{p-1}{p^{N+1}}\right)^{\frac{l}{4}} & l \text { even } \\ \left(\frac{p-1}{p^{N+1}}\right)^{\frac{l+1}{4}}\left(\frac{p}{p+1}\right) & l \text { odd }\end{cases}
$$

- In summary:

1. From bdry to horizon, using recursion $\star \star$
2. Go around the horizon, using recursion
3. From horizon to bdry, using recursion \star (just $\star \star$ flipped)

Massive scalars

- Can generalize to massive scalar (perturbatively in m)

$$
m_{p}^{2}=-\frac{1}{\zeta_{p}(\Delta-1) \zeta_{p}(-\Delta)}=-(p+1)+2 \sqrt{p} \cosh \left[\left(\Delta-\frac{1}{2}\right) \ln p\right]
$$

where local zeta function: $\zeta_{p}(s) \equiv \frac{1}{1-p^{-s}}$
Breitenlohner-Freedman (BF) bound $m_{B F, p}^{2}=-1 / \zeta_{p}(-n / 2)^{2}$

- $Z_{\text {tree }}(m \rightarrow 0)=\left(p^{N}+p^{N-1}\right) e^{\frac{N m^{2}}{p-1}}$
- $Z_{\text {tree }}(m \rightarrow \infty)=\left(p^{N}+p^{N-1}\right) m^{2 N} e^{\frac{N(p+1)}{m^{2}}}$

Unregularized

- $Z_{\mathrm{BTZ}}(m \rightarrow 0) \approx\left\{\begin{array}{l}\left(1+\frac{l m^{2}}{2 p}\right)^{\frac{1}{2}}\left(\frac{p^{N+1}}{p-1}\right)^{\frac{l}{2}}\left(1+\frac{N m^{2}}{(p-1)^{2}}\right)^{\frac{l}{2}} \\ \left(1+\frac{l m^{2}}{2 p}\right)^{\frac{1}{2}}\left(\frac{p^{N+1}}{p-1}\right)^{\frac{l}{2}}\left(1+\frac{N m^{2}}{(p-1)^{2}}\right)^{\frac{l}{2}}\left(A \cos \left(\frac{\pi}{l}\right)+B\right) l \text { oven }\end{array}\right.$
- $Z_{\mathrm{BTZ}}(m \rightarrow \infty) \approx \begin{cases}m^{l N-l}\left(1+\frac{N}{m^{2}}\right)^{\frac{l}{2}}\left(\frac{N(p+1)^{2}}{2}+\frac{\left(1-p^{2}\right) m^{2}}{2}\right)^{\frac{1}{2}} & l \text { even } \\ m^{l N-l}\left(1+\frac{N}{m^{2}}\right)^{\frac{l}{2}}\left(\frac{N(p+1)^{2}}{2}+\frac{\left(1-p^{2}\right) m^{2}}{2}\right)^{\frac{1}{2}}\left(C \cos \left(\frac{\pi}{l}\right)+D\right) & l \text { odd },\end{cases}$
- A, B, C, D are rational functions of m, N, p

4. One-pt function

1-loop Witten diagram

- Modular invariance is crucial in usual 2d CFT: constrains partition functions, spectrum of operator dimensions...
- Torus 1-pt function can be used to estimate high-temperature spectral density weighted by OPE coefficients
- Specifically: $\langle E| \mathcal{O}|E\rangle$
- $|E\rangle$: high-energy state dual to BTZ (semiclassical)
- \mathcal{O}, χ : light primary operators dual to light bulk scalars $\phi_{\mathscr{O}}$ and ϕ_{χ} with energy $E_{\mathscr{O}}, E_{\chi} \ll c / 12$
- $\phi_{\mathscr{O}}$ and ϕ_{χ} are not conical defects

1-loop Witten diagram

- Averaged 3-pt light-heavy-heavy coefficient $\overline{\langle E| \mathcal{O}|E\rangle} \equiv \frac{\langle E| \mathcal{O}|E\rangle}{\rho(E)}$, taken
over all states with energy E

Denominator: by Cardy formula
Numerator: $\langle\mathcal{O}\rangle=\operatorname{Tr}_{\mathcal{H}_{S^{1}}} \mathcal{O} e^{-\beta H}=\sum_{i}\langle i| \mathcal{O}|i\rangle e^{-\beta E_{i}} \quad S^{1}$: thermal circle

- Asymptotics: exponentially suppressed

$$
\overline{\langle E| O|E\rangle} \approx C_{\mathcal{O} \chi x} r_{+}^{\Delta_{\mathcal{O}}} e^{-2 \pi \Delta_{x^{\prime}} r_{+}} \quad \text { In large } r_{+} \text {limit }
$$

- Can be computed from Witten diagram

$$
\overline{\langle E| O|E\rangle}=C_{\mathcal{O} \chi \chi} \int d r d t_{E} d \phi r G_{b b}\left(r ; \Delta_{\chi}\right) G_{b \partial}\left(r, t_{E}, \phi ; \Delta_{\mathcal{O}}\right)
$$

- $G_{b b}$ obtained by method of images

$$
\begin{aligned}
G_{b b}\left(r, r^{\prime}\right)=-\frac{1}{2 \pi} & \sum_{n=-\infty}^{\infty} \frac{e^{-\Delta \sigma_{n}\left(r, r^{\prime}\right)}}{1-e^{-2 \sigma_{n}\left(r, r^{\prime}\right)}} \\
& \sigma_{n}\left(r, r^{\prime}\right): \text { geodesic distance } \mathrm{b} / \mathrm{w} r \text { \& } n^{\text {th }} \text { image } r^{\prime}
\end{aligned}
$$

p-adic Witten diagram

- In p-adic, compute

$$
\overline{\langle E| \mathcal{O}|E\rangle} \approx C_{\mathcal{O} \chi \chi} \sum_{(n, h)} d(n, h) G_{b b}\left(n, h ; \Delta_{\chi}\right) G_{b \partial}\left(n, h ; x, \Delta_{\mathcal{O}}\right)
$$

BT tree reprametrized by $(n, h): n=0$, same subtree

p-adic Witten diagram

- $G_{b b}$ and $G_{b d}$ basically known [Gubser et al., '16; Heydeman et al., '16]

$$
G_{b b}\left(z, z_{0} ; w, w_{0}\right)=p^{-\Delta_{\chi} d\left(z, z_{0} ; w, w_{0}\right)}
$$

- In our case,

For $\chi: \quad G_{b b}^{\text {renorm }}(n, h)=\frac{2 p^{-2 \Delta_{\chi} h}}{p^{\Delta_{\chi} l}-1} \quad$ from method of images
For $\mathcal{O}: \quad G_{b \partial}(b, x)=p^{-\Delta_{\mathcal{O}} d_{\text {reg }}(b, x)}+\frac{2 p^{-\Delta_{\mathcal{O}} h}}{p^{\Delta_{\mathcal{O}} l}-1}$

- Need to regularize the geodesic distance by dictating $d_{\text {reg }}(C, x)=0$ if x is in the subtree rooted at C on horizon [Zabrodin, '89; Heydeman et al., '16]
- $\overline{\langle E| \mathcal{O}|E\rangle}=\overline{\langle E| \mathcal{O}|E\rangle_{n=0}}+\overline{\langle E| \mathcal{O}|E\rangle_{n \neq 0}}=C_{O \chi \chi}^{\prime} \frac{1}{p^{\Delta_{\chi} l}-1} \xrightarrow{l \rightarrow \infty} C_{\mathscr{O}_{\chi \chi}}^{\prime} p^{-\Delta_{\chi} l}$
- Intuition for no analog of $r_{+}^{\Delta_{\sigma}}: \mathcal{O}$ unable to "see" the "radius" of p-adic BTZ!
- Expected to be a universal feature for all p-adic CFTs

5. Representations?

Trouble w/ Lie algebras

- It would be great if we can compute 1-pt function using $\langle\mathcal{O}\rangle_{\tau}=\operatorname{Tr}_{\mathscr{H}} \mathcal{O} q^{L_{0}-\frac{c}{24}} \bar{q}^{L_{0}-\frac{c}{24}}$ with $q \equiv e^{2 \pi i \tau}$, as in ordinary CFT
- Unfortunately, the exponential map from $\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)$ to " $\mathfrak{p g l}\left(2, \mathbb{Q}_{p}\right)$ " doesn't exist: p-adic exponential $\exp (z) \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ diverges at identity, since radius of convergence is $|z|_{p}<p^{-1 /(p-1)}$
- So Hilbert space \mathscr{H} can't be a rep of algebra, but we still want a group rep. JT or spinors on AdS_{2} quantized by group rep of gauge group $S L(2, \mathbb{R}) \times U(1) / \mathbb{Z}$ [lliesiu, Pufu, Verlinde, Wang, '19] or $\widetilde{S L(2, \mathbb{R})}$ [Kitaev, '17]
- Since all p-adic CFTs are unitary, we want unitary irreps
- All unitary irreps of $P G L\left(2, \mathbb{Q}_{p}\right)$ naturally induces an irrep of $G L\left(2, \mathbb{Q}_{p}\right)$, so we study the latter and then canonically restrict it

Big picture

We want the so-called admissible representation (smooth \& irreducible)

Narrowing down

- All finite-dim smooth irreps are trivial: just a 1d \mathbb{C}-vector space where $G L\left(2, \mathbb{Q}_{p}\right)$ images act like scalar multiplication
- However, likely that an ensemble of primaries can be viewed as a tensor product of them
- Langlands-like classification of ∞-dim irreps: supercuspidal, principal series, special
- Supercuspidal is desirable, b / c they are the most "native" rep of $G L\left(2, \mathbb{Q}_{p}\right)$: all others can be derived from this, and it has a nicer inner product. Behaves like reps of a compact Lie group.

Big picture, restricted

Narrowing down

- All finite-dim smooth irreps are trivial: just a 1d \mathbb{C}-vector space where $G L\left(2, \mathbb{Q}_{p}\right)$ images act like scalar multiplication
- However, probable that an ensemble of primaries can be viewed as a tensor product of them
- Langlands-like classification of ∞-dim irreps: supercuspidal, principal series, special
- Supercuspidal is desirable, b / c they are the most "native" rep of $G L\left(2, \mathbb{Q}_{p}\right)$: all others can be derived from this, and it has a nicer inner product. Behaves like reps of a compact group.
- Normally, summand in the Virasoro character on torus $\chi(q)=\operatorname{Tr}_{\mathscr{e}} q^{L_{0}-\frac{c}{24}}$ can be viewed as a rep of the dilatation transformatic

$$
\left(\begin{array}{cc}
q^{\frac{1}{2}} & 0 \\
0 & q^{-\frac{1}{2}}
\end{array}\right) \quad \text { Schottky }
$$

- We want $Z_{p-\text { adic } C F T}=\operatorname{Tr}_{V} \pi\left[\left(\begin{array}{cc}q^{\frac{1}{2}} & 0 \\ 0 & q^{-\frac{1}{2}}\end{array}\right)\right]$ from a rep (π, V) of $G L\left(2, \mathbb{Q}_{p}\right)$

Outlook

- Regularization for p-adic BTZ? RG flow? [Hung, Li, MelbyThompson, '19; Abdesselam, '21]
- Detailed spectrum for BTZ?
- Incorporate true gravitational fluctuation?
- Other degrees of freedom: gauge fields, susy (fermions), etc
- Connections with spin glass, etc
- Pinpoint the representation(s)

Thank you!

