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Motivation

To get a discretized spacetime model which is most similar to ordinary
AdS spacetime (unlike e.g. tensor networks).

Inspired by the success of p-adic string in the 80s [Brekke, Freund, Olson,
Witten; Vladimirov; Dragovic, Volovich; many others...]

Veneziano & Shapiro-Virasoro amplitudes: adelic product

Connections with strongly-correlated condensed matter systems: e.g.
ultra-cold atoms [Bentsen, Hashizume, Buyskikh, Davis, Daley, Gubser,
Schleier-Smith, '19]

Earlier work on connections between dS/CFT and BT tree in the context
of eternal inflation [Harlow, Shenker, Stanford, Susskind, "12]

Modern foundation:|[Gubser, Knaute, Parikh, Samberg, Witaszczyk, "16]
[Heydeman, Marcolli, Saberi, Stoica, '16]




1. Introduction to p-adic



A d # N
(not so) weird # system . &
The tortoise can’t take over the hare!
e Non-Archimedean: sup { |n|g:n € Z[F} = 1, not sup { |n|g:n € Z[F} = 00
Ea¥
o = Ultrametricity: |x+y|[F§sup(|x|[F,|y|[F) } B {
= All triangles are “tall isosceles”, otherwise o
triangle ineg/axiom|x + y|. < | x| + |y | violated I

Basic idea: 1. View p as a small but nonzero #
2. All integers coprime to p have the same size

o Foraprime p, Q, is a completion of rationals Q w.r.t. the p-adic norm | - |p
Any x € Q, has a unique p-adic expansion:

— § : n
le.a;;azalag. a_la_z...avp = anp p

— -~

o0

i N n=v
in Zp fractional part of x P

where a, € {0,1,---,p— 1}, and v, is the smallest integer index s.t. a, * 0
« Norm |x| =p~"

o Ostrowski’'s theorem: QQ only has two completions! R & @p



Bruhat-Tits (BT) tree

A great visualization of p-adic #'s

I}, has valence p + 1, also called “Bethe lattice”, such as in

1st introduced into hep-th by
string worldsheet

_ pl —
oT, = P'(Q,) = Q,U
Isometry group is PGL(2,Q))

Key player for p-adic holography

Straightforward for unramified extension
Q,., an n-dim vector space over Q,

as the interior of an open-

-
.
......
........



1st definition of Tp

Based on equiv classes of the @g-lattice <L

Consider & = {au + by € @1% la,b € Zp}, where u and v are independent
basis vectors in Q2. & ~ Z'if & = cZ'for some ¢ € Q

Assign each equiv class to a vertex on the tree

M € GL(2,Q,) acts on &£ as matrix multiplication: M~ = (Mu, Mv).
Generically PGL(2,@p) takes one equiv class to another.

But any subgroup conjugate to PGL(Z,ZP) leaves an equiv class invariant

= Tp should really be the homogeneous space PGL(2,@p)/PGL(2,Zp),
the latter being the max. compact subgroup.

With vertices, we need edges: & and £’ are incidentif p Cc &X' Cc &



2nd definition of Tp

rl?s:r?]rmmes [Gubser, Knaute, Parikh, Samberg, Witaszczyk, "16]

, Expand 7 =Z a,p”,ay# 0
m=0

e To move up the tree: choose p-adic digits from right to left, starting from

the decimal pt.
After leaving the red trunk, each node is a rational approximation

zeQ,
0010.1. >
L Z’D ]
0 piﬂpr U, Uy p7'U, i
 Valence p + 1: e o :
1. Rightmost digit # 0 — (p — 1) choices
2. Any digit to its left can be zero — p choices 2 1 A\ # i,
o Ring of integers: Z, = {x € Q,, : |x|p <1} g
Set of units: Mp:{xe@p:|x|p:1} \ p=2 .

Multiplicative subgroup: @ = Q,\{0} Y



Our results

e Computed partition functions for p-adic “thermal AdS” (TAdS) and "“BTZ
black hole”

e p-adic “genus-1" 1-point function in the semiclassical background of p-adic
BTZ

e Set up certain criteria to pinpoint the group representation(s) of PGL(2,@p)
for p-adic CFTs



3. p-adic bulk & bdry



Genus > 0 curves

T2 identified with the complex lattice Z + tZ, r € C.

Usual BTZ is H*/T", " ¢ PSL(2,C) a Schottky group,

generated by ( ¢z 0 ) where g = e?™*
0 q_%

p-adic BTZ is constructed in the 2nd way: quotient by " = < (g (1)> >

where g € Q)

B=T,u <|]3’1(@p)\{0,oo}>, where {0,001} is the limit set = genus-1 bdry

B/I" has one regular polygon at the center. The horizon length is
l—logplql > 1. "

l=4,p=3

Genus-1: Tate (uniformized) elliptic curve
Genus >1: Mumford curve




Axioms of p-adic CFT

e Has an operator product expansion (OPE) algebra w/ real OPE coeff
o C-valued correlation functions

e Transformation x — x' € Pl(@p) is fractional linear:

, ax+b ab
— GL (2
rA cx +d’ (cd)e (2.Qy)

Easy to show: ¢/ (x")(dx)* = ¢, (x)(dx)*, so all fields are primary,

* Primary operators can have arbitrary dimensions, but the identity operator
must have dimension O.

e 2-pt & 3-pt functions: AL,=A+ A, — A,

C C
(O1(1)02(22)) = =222 (01(21)02(22) O3 (23)) = —5— 22T
z12]p 12121 p 2 |223]p %% | Z311p

e Automatically unitary (unlike Archimedean CFT)

e No local conformal algebra or descendants = OPEs are exact.
Just the global conformal group PGL(2,Q))



QR QK

p-adic holography

[Gubser, Knaute, Parikh, Samberg, Witaszczyk, '16]
* First established using propagators & correlators.

* They look similar!

N e

* Bulk-to-bdry propagators: K0, 27) = V(22 + (7 — 7))
g ((2A —n) (22 + (Z—2)2)A

K0 58) = Cn ) (e — )2
* Bulk-to-bulk propagators: G20, 7w, T) — 2A1—n§“ C@fé)n)“of < JF, (AA_H%;QA_HL__

GEA—n) 08
pA Cp(2A o ’I’L) i

G(z07 <5 Wo, ’lU) -

e 2-pt functions: (O)O)e = ol (28 = ) g(O;(Azé)n) m;m
(O(21)O(22)), p (p(24) 1

~ T RA =) 20 — n) jr1a 25

e 3-pt functions: C (AP C.(3A — n) 1

20 (2A —n)? |10 A Z03] 2 |218]A

(p(A)?C,(3A —n) 1
Cp(QA — n)3 |£L’12217233313|qA

(O(71)0(2)O(T3))oc =~ L" " g3

(O(21)O0(22)O(3))p = —IpY3

£ (s) = 7T (s/2)

Uoo

-



p-adic holography
e p-adic 4-pt function much simpler than ordinary one, due to ultrametricity

= | Z13| = 1Z14| = | Z04| = 203

e In unramified extension Qpn, operator 1" dual to edge length fluctuations on

BT tree has 2-pt function (T'(2)T(0)) o< 1/|z]** = [T] = n, as expected
for a stress tensor, but still 4 spin-2 particle...

* Besides these traditional holographic quantities, it has passed checks:
Ryu-Takyanagi formula, MERA, etc



3. Bulk computations



GKP-W dictionary

e |In AdS/CFT, For a CFT local operator @0, we have

Zgrav[$(x); IM] = <exp (— > fa . d“ X} ()0 (x)

source

) >CFT on oM

with boundary condition ¢'(z, x) = z~%¢(x) + (subleading) as z — 0
[Gubser-Klebanov-Polyakov, '98; Witten, '98]

e By setting gbg = 0, the generating functional computes the CFT partition

function

e Here Ztree — /D¢ae_Stree[¢a]

e Streel®,] is for massive scalar fields with source.

Stree [¢a] — Z

(ab)

1 1
5 ($a — $p)° + ) (Em%(ﬁg -

Ja

a’ labels vertices

)

source

sums over adjacent vertices



GKP-W dictionary

e Linearized EoM: ([]+ ml%)gba = J,, where [] is the lattice/graph Laplacian,

a positive definite operator []¢, = Z (@, — @)
(ab)

1

* Now the partition function is simply Z, = .
\/det’ (O +m2)

e To compute this, we need eigenvalues A’s of the Laplacian

* Another way is to use tensor network, making analogy with ordinary
diagonal CFTs, to compute it as Z |2
a

[Hung, Li, Melby-Thompson, '19]
e | et’s first look at “thermal AdS”, which is a truncated BT tree.

e All discussions will be on massless scalars



p-adic TAdS

BT tree is homogeneous: can arbitrarily pick the center and assign any
vertex with “depth n”: # of edges away from the center, whose depth is 0.

« Show A angular modes: take ¢ |, = ¢y = 0, use the recursion
P

P(Dy_1 —0) + (dy_1 — Py_r) = AQy_, On the fixed ¢,_, to get €/;N—1 =¢nv_1- B

e ConsiderJ =0, fromn =2:p(¢,_; — ¢,) + (P, — P,_») = AP,_, *, then

A 2 )2
¢1\< p+1>¢0}'< p p+p2>¢0
Initial condition ) )

1 p>—1—-Ip+2

From char. eq.—»c. = |- %
2 2p+DV(p 122 —4p

e Field value ¢, = c, o' + c_a” is a polynomial in eigenvalue 4
(=D,
pN _|_pN—1

Coeff of the highest-degree term:

Coeff of the constant term: ¢,
Vieta formula on ¢, = 0 = product of all roots 4’s of ¢, is p”’ + pN-1

Do



p-adic TAdS

(p—l—l)pN—2 N—>oo\ p
p—1 / p—1
e Recall divergences in ordinary AdS;/CFT,:

e # of boundary points (pN + pN_l) diverges

1. 1-loop determinant of [ ] + m? for a massive scalar on H?: ; U\_/(,%zlﬁ),
{
—Vol (H3)/ c
2 t (4mt)3/2

2. For on-shell Einstein-Hilbert action with constant metric

]‘ 3
167G / @29 (R =20) = =0

2
1
Introduce a renormalized vol V,(r) = /3 . _ml
2¢2 2 €

* All can be removed by local counterterms

e In our case, bdry area shows up in e® instead of in action S, but the volume
of BT tree grows exponentially instead of power-law.

* Propose the regularized partition function p 1/2
Ztree — ( )

p—1




Detailed spectrum

Numerical observations (N — oo, at fixed p):

1. Upper bound on 4; & lower bound on 4y converge, separately (Newton’s method)

2. Decay of field values is almost exponential

Amax

10 20 30 40 5(
L J
=20 + ®e ~20F
..
[ ]
40} e -40
[ ]
[ ]
-60 °. -60 |
[ ]

®e
-80 . -80
o

Re [log(¢n/¢0)]

(a) Asymptotics at the smallest eigenvalue.

Re [log(¢n/¢0)]

(b) Asymptotics at the largest eigenvalue.

3. After removing the exponential envelope, ¢, oscillates around 0

1.0
0.5
) L— N
0 3 4 50

-1.0+

(a) Oscillation of ¢, /¢ at the 15" largest eigen- (b) Oscillation of ¢,/¢o at the 33" largest eigen-
value for p = 239. value for p = 239.



Detailed spectrum

[ — 1
N —1

Ansatz:

Oni = p_"/2 COs (kn

T+ ¢)¢o,i

k, y: to be determined

. . . o - 1/2 l - 1
Along with the recursion relation = [A; = p+1—2p*/“cos kN T

How about £?

Plot all eigenvalues in descending order
(N = 351)
= easy toseethatk =1

The blue equation is exact only if the |
corresponding ¢, ; is for large n, and N — oo

Different from the “plane-wave” basis ¢, (v) &« p™*) in [Heydeman-

Marcolli-Saberi-Stoica, '16] x = 0,1, d(x, v): distance from bdry pt x
call it the “evanescent-wave” basis



p-adic BTZ

* New feature: field values on horizon (depth 0) can be different —

D0.0s Po1> --» Pos> -+ Po 1, Where s labels horizon vertices & subtgegs

e Boundary (depth N) values vanish, initial condition is

Pyos=pP+1—=A)py_,fort =0,...,1-1 )
subscript 7 in A, will be clear soon ON-2.s

* Linear recursion towards the horizon same as before (flipped): o0

Gpost+tA—p—D¢p,_ 1 +pdh,, =0, 2<n<N-1 ** _Roots of char. eq.
N/

. . N—1-
] Fleld ValueS ¢H,S — C+,t (¢N—1,S> . Cl_ht " + C—,t <¢N—1,S> . a_,t Olorl @ -.

* Denote ratio b/w field values at depth 1 bos Do
& on the horizon as k = ¢, /¢y ;.

It is iIsotropic around the horizon,
but still depends on a, , and thus A $0,5-1

so write is as k,(4,)

$1,541 =k ¢o,s41

gb().s+2



p-adic BTZ

e Now the recursion around the horizon is
dos+2—[(p — DA =kt (Ar)) — At + 2] pos+1 + Pos =0, s=0,..., [ —1
w/ periodic bdry ¢ o = ¢y

e Solution to characteristic eq:

=5 {1 =D A= KO) = A+ 2 24/ilp - D= k() - X+ 2 -4

1 2t
e It must be a root of unity = k;(A;) =1 — Py (2(:05 (%) + A —2), t=0,...,

w/ 2-fold degeneracy k(4,) = k,_(4,_,), and ¢ labels oscillation modes

e Turns out that the product of all roots for a fixed ¢ is

N=1_1 N—1 2mt
pV + pN-1 —|—2p —2p COS il
p—1 p—1 [

 Finally, need to multiply contributions from all r = 1,..., [1/2]

: o b 2rka
* Key identity: 1_[ [Zx + ZCOS(

5 + 9)] =2 [TB (x) + (£1)B(—1)*P+e cos(ﬁ@)]
k=1



p-adic BTZ

* Expressed in terms of Chebyshev polynomials of the 1st kind:

( Lo il
ﬁ(;—ivl)z 17 (p;;l) —1]° [ even
9 /] - 1 1
N2 +1 12 [ 2V L2+ 142p cos(x/ D)) |2
V2(L&5)" [T (BEt) -1 | et [ odd.

o Diverging p'N as N — oo completely differs from: growth of # of bdry pts
I(p—2)(p— 1)~ or the growth of total # of pts in the BTZ graph /p", so
there is no obvious way to regularize, and we keep our results as

L
(p—_l) ! [ even

N —+1
_J\»p
ZBTY7 = X I+1

(2et) ¥ () om

:

* In summary:
1. From bdry to horizon, using recursion *
2. Go around the horizon, using recursion
3. From horizon to bdry, using recursion % (just % % flipped)



Massive scalars

e Can generalize to massive scalar (perturbatively in m)

2 _ 1 _ 21
m, = A —DG(—A) (p+1)+2yp cosh[(A 2>ln p]
where local zeta function: (,(s) = 1 ! —
_p S
Breitenlohner-Freedman (BF) bound mI%F’p = — l/g“p(—n/Z)2
o Ztree(m — O) — (pN —l—pN_l) eJZTml
p+1 Unreqularized
. Ztree(m N OO) _ (pN _|_pN—1) mQNeNgmg ) g
( 1 L L
M 2 pN-i-l 2 NmZ 2
" Zprz(m — 0) ~ 4 (1+ 2102); (1;:1); (1 " <10112)é even
(1+%22)7 (250) 7 (1+ &25) 7 (Acos (7) + B) Lodd

L l

., ( ) N1 (1 n %)2 (N(p;1)2 n (1—p22)m2)2 ! even
BTZ\T — OQ) =~ , 1

mlN—l (1 _I_ l)ﬁ (N(pg‘l)Q _|_ (1—p2)m2) 2 (CCOS (%) —|— D) l Odd

2

 A,B,C,D are rational functions of m, N, p



4. One-pt function



1-loop Witten diagram

Modular invariance is crucial in usual 2d CFT: constrains partition functions,
spectrum of operator dimensions...

Torus 1-pt function can be used to estimate high-temperature spectral
density weighted by OPE coefficients

Specifically: (E|O|E)
|E) : high-energy state dual to BTZ (semiclassical)

O, y: light primary operators dual to light bulk scalars ¢, and ¢, with energy
Eg E, < c/12

¢, and @, are not conical defects




1-loop Witten diagram

E|O\E)

Averaged 3-pt light-heavy-heavy coefficient (E|O|E) = < , taken
over all states with energy E p(E)
Denominator: by Cardy formula
Numerator: (O) = Try , O e " = Z<i|(9|i> e PEi S!: thermal circle
Asymptotics: exponentially suppressed
(E|O|E) m CopyyryCe 2maxrs In large r, limit

Can be computed from Witten diagram

(EIOIE) = Con, / drdtpdd r Guy (1: A) Gao (s £, & Do)

G,, obtained by method of images

be (T, 7“’) —

1
2T

o0 _ /
e Ao (r,r")

1 — e20n (r,r’)
n=—o00

o, (r, r"): geodesic distance b/w r & n™ image r’



p-adic Witten diagram

* In p-adic, compute
(E|O|E) = Coyy Z d(n, h)Gp(n, h; Ay )Gra(n, by x, Ap)

(n,h)

BT tree reprametrized by (n, h): n = 0, same subtree
n # 0, different subtrees

“subways”



p-adic Witten diagram

G,;, and G, ; basically known [Gubser et al., "16; Heydeman et al., "16]

be(za ZO, w, w()) = p_AXd(ZaZO;w,wo)

In our case,
- renorm 2p_2AXh
Fory: G5 (n,h) = AT
7 p—Aoh
. _ o —Apdres(b,x) P
For O: Gba(b,x)—p g -+ pAOl_l

Need to regularize the geodesic distance by dictating dreg(C, x)=0ifxisin
the subtree rooted at C on horizon [Zabrodin, '89; Heydeman et al., '16]

1

/ [— 00 ’ —
(ETOTE) = (ETO1E), o+ ETO1E), 40 = Copgi—y = C Py

Intuition for no analog of rf@: @ unable to “see” the “radius” of p-adic BTZ!

Expected to be a universal feature for all p-adic CFTs



5. Representations?



Trouble w/ Lie algebras

It would be great if we can compute 1-pt function using
(0). = Tro, Oglo—2igto=a with ¢ = "7, as in ordinary CFT

Unfortunately, the exponential map from PGL(2,Q,) to “pgl(2,Q,)” doesn't

o0 n

exist: p-adic exponential exp(z) = Z Z—’ diverges at identity, since radius of
n.
n=0

convergence is |z |p < p~ V=D

So Hilbert space # can’t be a rep of algebra, but we still want a group rep.
JT or spinors on AdS, quantized by group rep of gauge group

SL2,R)x U(1)/Z or SL(2,R)

Since all p-adic CFTs are unitary, we want unitary irreps

All unitary irreps of PGL(2,Q,,) naturally induces an irrep of GL(2,0Q,), so we
study the latter and then canonically restrict it



Big picture

We want the so-called admissible representation (smooth & irreducible)

Admissible (reducible not included)

Contragredient

upercuspidal Special

Unitlary

Finite-
dimensional

Principal Serie

Contragredient

Irreducible

Unitarizable




Narrowing down

All smooth irreps are ftrivial: just a 1d C-vector space where
GL(Z,G;DP) images act like scalar multiplication

However, likely that an ensemble of primaries can be viewed as a tensor
product of them

Langlands-like classification of Irreps: supercuspidal, principal series,
special

Supercuspidal is desirable, b/c they are the most “native” rep of GL(Z,QP):

all others can be derived from this, and it has a nicer inner product. Behaves
like reps of a compact Lie group.



Big picture, restricted

Admissible (reducible not included)

Contragredient

upercuspidal Special

Unit ary

Finite-
dimensional

Principal Serie

Contragredient

Irreducible



Narrowing down

All finite-dim smooth irreps are trivial: just a 1d C-vector space where
GL(2,Q,) images act like scalar multiplication

However, probable that an ensemble of primaries can be viewed as a tensor
product of them

Langlands-like classification of co-dim irreps: supercuspidal, principal series,
special

Supercuspidal is desirable, b/c they are the most “native” rep of GL(2,@p):

all others can be derived from this, and it has a nicer inner product. Behaves
like reps of a compact group.

Normally, summand in the Virasoro character on torus y(q) = Trgeg™ 027 can
be viewed as a rep of the dilatation transformatic ( q% 0

) Schottky
0 q

N [=

gz 0

We want Zp—adic crr = 1ry [( 0 _1 )] from a rep (77:9 V) of GL(2,@p)
q 2



Outlook

Regularization for p-adic BTZ? RG flow?

Detailed spectrum for BTZ?

Incorporate true gravitational fluctuation?

Other degrees of freedom: gauge fields, susy (fermions), etc
Connections with spin glass, etc

Pinpoint the representation(s)



Thank yout!



