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Motivation
• To get a discretized spacetime model which is most similar to ordinary 

AdS spacetime (unlike e.g. tensor networks).                                                   
Many techniques carry over: propagators, Witten diagrams, GKP-W 
dictionary, etc… 

• Inspired by the success of -adic string in the 80s [Brekke, Freund, Olson, 
Witten; Vladimirov; Dragović, Volovich; many others…] 

• Connections with strongly-correlated condensed matter systems: e.g. 
ultra-cold atoms [Bentsen, Hashizume, Buyskikh, Davis, Daley, Gubser, 
Schleier-Smith, ’19] 

• Earlier work on connections between dS/CFT and BT tree in the context 
of eternal inflation [Harlow, Shenker, Stanford, Susskind, ’12] 

• Modern foundation: [Gubser, Knaute, Parikh, Samberg, Witaszczyk, ’16]       

p

Veneziano & Shapiro-Virasoro amplitudes: adelic product

[Heydeman, Marcolli, Saberi, Stoica, ’16]



1. Introduction to -adicp



• Non-Archimedean: , not  

•  Ultrametricity:                                                            
 All triangles are “tall isosceles”, otherwise                                                

triangle ineq/axiom  violated 

Basic idea: 

• For a prime ,  is a completion of rationals  w.r.t. the -adic norm               
Any  has a unique -adic expansion: 

• Norm  

• Ostrowski’s theorem:  only has two completions!  & 

sup { |n |𝔽 : n ∈ ℤ𝔽} = 1 sup { |n |𝔽 : n ∈ ℤ𝔽} = ∞

⇒ |x + y |𝔽 ≤ sup ( |x |𝔽 , |y |𝔽 )
⇒

|x + y |𝔽 ≤ |x |𝔽 + |y |𝔽

p ℚp ℚ p | ⋅ |p
x ∈ ℚp p

|x |p = p−vp

ℚ ℝ ℚp

A (not so) weird # system

1. View  as a small but nonzero #p
2. All integers coprime to  have the same sizep

where , and  is the smallest integer index s.t. an ∈ {0,1,⋯, p − 1} vp avp
≠ 0

From right to left!

⟵

The tortoise can’t take over the hare!



Bruhat-Tits (BT) tree
• A great visualization of -adic #’s 

•  has valence , also called “Bethe lattice”, such as in [Baxter, ’82] 

• 1st introduced into hep-th by [Zabrodin, ’89] as the interior of an open-
string worldsheet 

•  

• Isometry group is  

• Key player for -adic holography 

• Straightforward for unramified extension 

• C.f. talk by Ling-Yan (Janet) on Tuesday                                                            
and the talk by Malek earlier today

p

Tp p + 1

∂Tp = P1(ℚp) ≡ ℚp ∪ ∞

PGL(2,ℚp)

p

, an -dim vector space over ℚpn n ℚp



1st definition of Tp

• Based on equiv classes of the -lattice  

• Consider , where  and  are independent 

basis vectors in .  if  for some  

• Assign each equiv class to a vertex on the tree 

•  acts on  as matrix multiplication: . 
Generically  takes one equiv class to another. 

• But any subgroup conjugate to  leaves an equiv class invariant 
  should really be the homogeneous space , 

the latter being the max. compact subgroup. 

• With vertices, we need edges:  and  are incident if 

ℚ2
p ℒ

ℒ = {au + bv ∈ ℚ2
p |a, b ∈ ℤp} u v

ℚ2
p ℒ ∼ ℒ′ ℒ = cℒ′ c ∈ ℚ×

p

M ∈ GL(2,ℚp) ℒ Mℒ = (Mu, Mv)
PGL(2,ℚp)

PGL(2,ℤp)
⇒ Tp PGL(2,ℚp)/PGL(2,ℤp)

ℒ ℒ′ pℒ ⊂ ℒ′ ⊂ ℒ



2nd definition of Tp

• Expand  

• To move up the tree: choose -adic digits from right to left, starting from 
the decimal pt.                                                                                                                           
After leaving the red trunk, each node is a rational approximation 

• Valence :                                                                                        

• Ring of integers:                                                               

Set of units:                                                                       

Multiplicative subgroup: 

z = pv ∑
m=0

ampm, a0 ≠ 0

p

p + 1

ℤp = {x ∈ ℚp : |x |p ≤ 1}
𝕌p = {x ∈ ℚp : |x |p = 1}

ℚ×
p ≡ ℚp\{0}

Determines 
norm

1. Rightmost digit    choices≠ 0 → (p − 1)
2. Any digit to its left can be zero   choices→ p

[Gubser, Knaute, Parikh, Samberg, Witaszczyk, ’16] 

p = 2



Our results
• Computed partition functions for -adic “thermal AdS” (TAdS) and “BTZ 

black hole” 

• -adic “genus-1” 1-point function in the semiclassical background of -adic 
BTZ 

• Set up certain criteria to pinpoint the group representation(s) of  
for -adic CFTs

p

p p

PGL(2,ℚp)
p



3. -adic bulk & bdryp



Genus   curves> 0
•  identified with the complex lattice , .  

• Usual BTZ is ,  a Schottky group,                             
generated by                     , where  

• -adic BTZ is constructed in the 2nd way: quotient by                                        
where   

• , where  is the limit set  genus-1 bdry 

•  has one regular polygon at the center. The horizon length is 
. 

• Genus-1: Tate (uniformized) elliptic curve                                                                          
Genus >1: Mumford curve

T2 ℤ + τℤ τ ∈ ℂ

ℍ3/Γ Γ ⊂ PSL(2,ℂ)
q = e2πiτ

p
q ∈ ℚ×

p

B ≡ Tp ∪ (ℙ1(ℚp)∖{0,∞}) {0,∞} ⇒

B/Γ
l = logp |q |p > 1

, l = 4 p = 3



Axioms of -adic CFTp
• Has an operator product expansion (OPE) algebra w/ real OPE coeff  

• -valued correlation functions 

• Transformation  is fractional linear: 

• Primary operators can have arbitrary dimensions, but the identity operator 
must have dimension 0. 

• 2-pt & 3-pt functions: 

• Automatically unitary (unlike Archimedean CFT) 

• No local conformal algebra or descendants  OPEs are exact.                      
Just the global conformal group 

ℂ

x → x′ ∈ P1(ℚp)

⇒
PGL(2,ℚp)

Δ12 ≡ Δ1 + Δ2 − Δ3

[Melzer, ’89]

Easy to show: , so all fields are primary,  is Haar 
measure on 

ϕ′ a(x′ )(dx′ )Δ = ϕa(x)(dx)Δ dx
ℚp



-adic holographyp
• First established using propagators & correlators. 

• They look similar! 

• Bulk-to-bdry propagators: 

• Bulk-to-bulk propagators: 

• 2-pt functions: 

• 3-pt functions:

[Gubser, Knaute, Parikh, Samberg, Witaszczyk, ’16]

ζ∞(s) ≡ π−s/2Γ(s/2)

ordinary

-adicp



-adic holographyp
• -adic 4-pt function much simpler than ordinary one, due to ultrametricity 

• In unramified extension , operator  dual to edge length fluctuations on 
BT tree has 2-pt function                                     , as expected 
for a stress tensor, but still  spin-2 particle…                                    
[Gubser, Heydeman, Jepsen, Marcolli, Parikh, Saberi, Stoica, Trundy, ’16] 

• Besides these traditional holographic quantities, it has passed checks: 
Ryu-Takyanagi formula, MERA, etc                                                   
[Heydeman, Marcolli, Saberi, Stoica, ’16; Hung, Li, Melby-Thompson, ’19]

p

ℚpn T
⟹ [T ] = n

∄

 ⟹ | ⃗z13 | = | ⃗z14 | = | ⃗z24 | = | ⃗z23 |



3. Bulk computations



GKP-W dictionary
• In AdS/CFT, For a CFT local operator , we have  

• By setting , the generating functional computes the CFT partition 
function  

• Here                                     .  

•  is for massive scalar fields with source. “ ” labels vertices

𝒪

ϕi
∂ = 0

Stree[ϕa] a

with boundary condition subleading  as ϕi(z, x) = zd−Δϕi
∂(x) + ( ) z → 0

sums over adjacent vertices
source

[Gubser-Klebanov-Polyakov, ’98; Witten, ’98]

source



GKP-W dictionary
• Linearized EoM: , where  is the lattice/graph Laplacian, 

a positive definite operator  

• Now the partition function is simply 

• To compute this, we need eigenvalues ’s of the Laplacian 

• Another way is to use tensor network, making analogy with ordinary 
diagonal CFTs, to compute it as                                                                                       

• Let’s first look at “thermal AdS”, which is a truncated BT tree. 

• All discussions will be on massless scalars

( □ + m2
p)ϕa = Ja □

□ ϕa ≡ ∑
⟨ab⟩

(ϕa − ϕb)

λi

[Hung, Li, Melby-Thompson, ’19]



-adic TAdSp
• BT tree is homogeneous: can arbitrarily pick the center and assign any 

vertex with “depth ”: # of edges away from the center, whose depth is 0. 

• Show  angular modes: take , use the recursion 

 on the fixed  to get . 

• Consider , from :  , then                                                                           

• Field value  is a polynomial in eigenvalue                                                                               

Coeff of the highest-degree term:                                                                                     

Coeff of the constant term:                                                                                                       
Vieta formula on   product of all roots ’s of  is 

n

∄ ϕ |∂Tp
≡ ϕN = 0

p(ϕN−1 − 0) + (ϕN−1 − ϕN−2) = λϕN−1 ϕN−2 ϕ̃N−1 = ϕN−1

J = 0 n = 2 p(ϕn−1 − ϕn) + (ϕn−1 − ϕn−2) = λϕn−1 ⋆

ϕn = c+αn
+ + c−αn

− λ
(−1)Nϕ0

pN + pN−1

ϕ0
ϕN = 0 ⇒ λi ϕN pN + pN−1

ϕ1 = (1 −
λ

p + 1 ) ϕ0 ϕ2 = (1 −
2λ
p

+
λ2

p + p2 ) ϕ0

c± = [ 1
2

± p2 − 1 − λp + λ

2(p + 1) (p + 1 − λ)2 − 4p ] ϕ0

∎

Initial condition

From char. eq.



-adic TAdSp
• # of boundary points                                                                      diverges 

• Recall divergences in ordinary AdS /CFT : 

1. 1-loop determinant of  for a massive scalar on :                                                                         
[Giombi-Maloney-Yin, ’08] 

2. For on-shell Einstein-Hilbert action with constant metric 

• All can be removed by local counterterms 

• In our case, bdry area shows up in  instead of in action , but the volume 
of BT tree grows exponentially instead of power-law. 

• Propose the regularized partition function 

3 2

□ + m2 ℍ3

eS S

Introduce a renormalized vol [Krasnov, ’00]

UV & IR



Detailed spectrum
Numerical observations ( , at fixed ): N → ∞ p
1. Upper bound on  & lower bound on  converge, separately (Newton’s method)λ1 λN
2. Decay of field values is almost exponential 

Re[ ]log(ϕn /ϕ0) Re[ ]log(ϕn /ϕ0)

3. After removing the exponential envelope,  oscillates around 0  ϕn



Detailed spectrum
• Ansatz:  

• Along with the recursion relation   

• How about ? 

• Plot all eigenvalues in descending order                                                 
( )                                                                                                                                     

 easy to see that  

• The blue equation is exact only if the                                                                     
corresponding  is for large , and  

• Different from the “plane-wave” basis  in [Heydeman-
Marcolli-Saberi-Stoica, ’16]   , : distance from bdry pt                                                                                         
call it the “evanescent-wave” basis

⇒

k

N = 51
⇒ k = 1

ϕn,i n N → ∞

ϵκ,x(v) ∝ p−κd(x,v)

κ = 0,1 d(x, v) x

, : to be determinedk ψ



• New feature: field values on horizon (depth 0) can be different —
, where  labels horizon vertices & subtrees 

• Boundary (depth ) values vanish, initial condition is                                                              
 for                                                                  

subscript  in  will be clear soon 

• Linear recursion towards the horizon same as before (flipped):                                                                             
 

• Field values:  

• Denote ratio b/w field values at depth 1                                                                    
& on the horizon as .                                                                                   
It is isotropic around the horizon,                                                                               
but still depends on  and thus ,                                                                            
so write is as 

ϕ0,0, ϕ0,1, …, ϕ0,s, …, ϕ0,l−1 s

N
ϕN−2,s = (p + 1 − λt)ϕN−1,s t = 0,…, l − 1

t λt

ϕn−2,s + (λt − p − 1)ϕn−1,s + pϕn,s = 0, 2 ≤ n ≤ N − 1

ϕn,s = c+,t (ϕN−1,s) ⋅ αN−1−n
+,t + c−,t (ϕN−1,s) ⋅ αN−1−n

−,t

k ≡ ϕ1,s /ϕ0,s

α±,t λt
kt(λt)

-adic BTZp

⋆ ⋆ Roots of char. eq.



• Now the recursion around the horizon is  

• Solution to characteristic eq: 

• It must be a root of unity                                                                                                          

• Turns out that the product of all roots for a fixed  is  

• Finally, need to multiply contributions from all  

• Key identity: 

⇒

t

t = 1,…, ⌈l/2⌉

-adic BTZp

w/ periodic bdry ϕ0,0 = ϕ0,l

w/ 2-fold degeneracy , and  labels oscillation modeskt(λt) = kl−t(λl−t) t

⋆ ⋆ ⋆



-adic BTZp
• Expressed in terms of Chebyshev polynomials of the 1st kind: 

• Diverging  as  completely differs from: growth of # of bdry pts 
, or the growth of total # of pts in the BTZ graph , so 

there is no obvious way to regularize, and we keep our results as  

• In summary:

plN N → ∞
l(p − 2)(p − 1)N−1 lpN

1. From bdry to horizon, using recursion ⋆ ⋆
2. Go around the horizon, using recursion ⋆ ⋆ ⋆
3. From horizon to bdry, using recursion  (just  flipped)⋆ ⋆ ⋆



Massive scalars
• Can generalize to massive scalar (perturbatively in ) 

•                             

•                             

• - 

• - 

•  are rational functions of 

m

=

=

A, B, C, D m, N, p

where local zeta function:

Breitenlohner-Freedman (BF) bound m2
BF,p = − 1/ζp(−n /2)2

Unregularized



4. One-pt function



• Modular invariance is crucial in usual 2d CFT: constrains partition functions, 
spectrum of operator dimensions… 

• Torus 1-pt function can be used to estimate high-temperature spectral 
density weighted by OPE coefficients 

• Specifically:  

•        : high-energy state dual to BTZ (semiclassical) 

• , : light primary operators dual to light bulk scalars  and  with energy 
 

•  and  are not conical defects

𝒪 χ ϕ𝒪 ϕχ
E𝒪, Eχ ≪ c/12

ϕ𝒪 ϕχ

1-loop Witten diagram

[Kraus, Maloney, ’16]



• Averaged 3-pt light-heavy-heavy coefficient                                     , taken 
over all states with energy  

• Asymptotics: exponentially suppressed  

• Can be computed from Witten diagram            

•  obtained by method of images

E

Gbb

1-loop Witten diagram

Denominator: by Cardy formula

Numerator:

In large  limitr+

: thermal circleS1

: geodesic distance b/w  &  image σn(r, r′ ) r nth r′ 



• In -adic, compute p

-adic Witten diagramp

BT tree reprametrized by : , same subtree(n, h) n = 0
, different subtreesn ≠ 0

“subways” [Gubser et al., ’16]



•  and  basically known [Gubser et al., ’16; Heydeman et al., ’16] 

• In our case, 

• Need to regularize the geodesic distance by dictating  if  is in 
the subtree rooted at  on horizon [Zabrodin, ’89; Heydeman et al., ’16]  

•  

• Intuition for no analog of :  unable to “see” the “radius” of -adic BTZ! 

• Expected to be a universal feature for all -adic CFTs

Gbb Gb∂

dreg(C, x) = 0 x
C

⟨E |𝒪 |E⟩ = ⟨E |𝒪 |E⟩n=0 + ⟨E |𝒪 |E⟩n≠0 = C′ Oχχ
1

pΔχl − 1
l→∞ C′ 𝒪χχ p−Δχl

rΔ𝒪
+ 𝒪 p

p

-adic Witten diagramp

For :χ

For :𝒪

from method of images



5. Representations?



• It would be great if we can compute 1-pt function using 
 with , as in ordinary CFT 

• Unfortunately, the exponential map from  to “ ” doesn’t 

exist: -adic exponential  diverges at identity, since radius of 

convergence is  

• So Hilbert space  can’t be a rep of algebra, but we still want a group rep.                
JT or spinors on AdS  quantized by group rep of gauge group 

 [Iliesiu, Pufu, Verlinde, Wang, ’19] or  [Kitaev, ’17] 

• Since all -adic CFTs are unitary, we want unitary irreps 

• All unitary irreps of  naturally induces an irrep of , so we 
study the latter and then canonically restrict it

⟨𝒪⟩τ = Trℋ 𝒪qL0− c
24 qL0− c

24 q ≡ e2πiτ

PGL(2,ℚp) 𝔭𝔤𝔩(2,ℚp)

p exp(z) ≡
∞

∑
n=0

zn

n!
|z |p < p−1/(p−1)

ℋ
2

SL(2,ℝ) × U(1)/ℤ ˜SL(2,ℝ)

p

PGL(2,ℚp) GL(2,ℚp)

Trouble w/ Lie algebras



We want the so-called admissible representation (smooth & irreducible)

Big picture



• All finite-dim smooth irreps are trivial: just a 1d -vector space where 
 images act like scalar multiplication 

• However, likely that an ensemble of primaries can be viewed as a tensor 
product of them 

• Langlands-like classification of -dim irreps: supercuspidal, principal series, 
special 

• Supercuspidal is desirable, b/c they are the most “native” rep of : 
all others can be derived from this, and it has a nicer inner product. Behaves 
like reps of a compact Lie group.

ℂ
GL(2,ℚp)

∞

GL(2,ℚp)

Narrowing down



Big picture, restricted



• All finite-dim smooth irreps are trivial: just a 1d -vector space where 
 images act like scalar multiplication 

• However, probable that an ensemble of primaries can be viewed as a tensor 
product of them 

• Langlands-like classification of -dim irreps: supercuspidal, principal series, 
special 

• Supercuspidal is desirable, b/c they are the most “native” rep of : 
all others can be derived from this, and it has a nicer inner product. Behaves 
like reps of a compact group. 

• Normally, summand in the Virasoro character on torus  can 
be viewed as a rep of the dilatation transformation  

• We want                                                          from a rep  of 

ℂ
GL(2,ℚp)

∞

GL(2,ℚp)

χ(q) = TrℋqL0− c
24

(π, V ) GL(2,ℚp)

Narrowing down

Schottky



Outlook
• Regularization for -adic BTZ? RG flow? [Hung, Li, Melby-

Thompson, ’19; Abdesselam, ’21]


• Detailed spectrum for BTZ?


• Incorporate true gravitational fluctuation?


• Other degrees of freedom: gauge fields, susy (fermions), etc


• Connections with spin glass, etc


• Pinpoint the representation(s)

p



Thank you!


